I’ve been trying to teach myself F# using the Project Euler problems, and I’m starting to feel I’m getting somewhere with the language. The few Euler problems I’ve solved so far have had very straightforward and natural solutions.

Problem 8 is as follows: Find the subsequence of 5 consecutive digits that yield the greatest product when multiplied together, in the 1000-digit number:

73167176531330624919225119674426574742355349194934

96983520312774506326239578318016984801869478851843

85861560789112949495459501737958331952853208805511

12540698747158523863050715693290963295227443043557

66896648950445244523161731856403098711121722383113

62229893423380308135336276614282806444486645238749

30358907296290491560440772390713810515859307960866

70172427121883998797908792274921901699720888093776

65727333001053367881220235421809751254540594752243

52584907711670556013604839586446706324415722155397

53697817977846174064955149290862569321978468622482

83972241375657056057490261407972968652414535100474

82166370484403199890008895243450658541227588666881

16427171479924442928230863465674813919123162824586

17866458359124566529476545682848912883142607690042

24219022671055626321111109370544217506941658960408

07198403850962455444362981230987879927244284909188

84580156166097919133875499200524063689912560717606

05886116467109405077541002256983155200055935729725

71636269561882670428252483600823257530420752963450

I was able to come up with an F# solution that is one line, plus a helper line to convert the string into a sequence of digits:

let str = "731<...>" let digits = Seq.map (fun x -> int (Char.GetNumericValue x)) str let maxproduct num list = Seq.max (Seq.map (fun x -> Seq.reduce (*) x) (Seq.windowed num list))

The value `digits` is just a list of the digits in the string, converted into integers. The function `maxproduct` works the obvious way: take every subsequence of five digits (`Seq.windowed`), multiply them together (`Seq.reduce`, applied to each element of the sequence with `Seq.map`) and then find the maximum (`Seq.max`).

The only reason this needs quite so little work is the existence of `Seq.windowed` in the standard library, which does exactly the right thing in turning a 1000-element list into 996 arrays of subsequences of consecutive digits.

I’m not sure I like ramming all the functions into one line, and I’m sure there must be a way to combine map and reduce without the lambda, which adds a lot of clutter. If this was real code, it would need quite a lot of work to make it readable. However, the standard library is a big win, because the process of ‘windowing’ a sequence is nicely separated from the code. It’s also nice (for toy problems like this, at any rate) that the program is pretty much a definition of the problem, with little thought being necessary as to how to do the processing.